Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502163

RESUMO

Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.


Assuntos
Actinas , Proteínas rho de Ligação ao GTP , Animais , Camundongos , Transdução de Sinais , Transmissão Sináptica , Endocitose
3.
Biol Psychiatry ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38154503

RESUMO

BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.

4.
Neuron ; 111(23): 3765-3774.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37738980

RESUMO

Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.


Assuntos
Vesículas Sinápticas , Sinaptotagmina I , Animais , Camundongos , Endocitose/fisiologia , Exocitose/fisiologia , Lipídeos , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
5.
EMBO J ; 41(9): e109352, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35318705

RESUMO

Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Endocitose/fisiologia , Endossomos , Neurotransmissores , Fosfatos de Fosfatidilinositol , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
6.
Curr Opin Neurobiol ; 69: 76-83, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33744822

RESUMO

Neurons are long-lived cells with a complex architecture, in which synapses may be located far away from the cell body and are subject to plastic changes, thereby posing special challenges to the systems that maintain and dynamically regulate the synaptic proteome. These mechanisms include neuronal autophagy and the endolysosome pathway, as well as the ubiquitin/proteasome system, which cooperate in the constitutive and regulated turnover of presynaptic and postsynaptic proteins. Here, we summarize the pathways involved in synaptic protein degradation and the mechanisms underlying their regulation, for example, by neuronal activity, with an emphasis on the presynaptic compartment and outline perspectives for future research. Keywords: Synapse, Synaptic vesicle, Autophagy, Endolysosome, Proteasome, Protein turnover, Protein degradation, Endosome, Lysosome.


Assuntos
Neurônios , Sinapses , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Sinapses/metabolismo , Transmissão Sináptica , Ubiquitina/metabolismo
7.
J Neurochem ; 158(3): 589-602, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33372296

RESUMO

Neurons, because of their elaborate morphology and the long distances between distal axons and the soma as well as their longevity, pose special challenges to autophagy and to the endolysosomal system, two of the main degradative routes for turnover of defective proteins and organelles. Autophagosomes sequester cytoplasmic or organellar cargos by engulfing them into their lumen before fusion with degradative lysosomes enriched in neuronal somata and participate in retrograde signaling to the soma. Endosomes are mainly involved in the sorting, recycling, or lysosomal turnover of internalized or membrane-bound macromolecules to maintain axonal membrane homeostasis. Lysosomes and the multiple shades of lysosome-related organelles also serve non-degradative roles, for example, in nutrient signaling and in synapse formation. Recent years have begun to shed light on the distinctive organization of the autophagy and endolysosomal systems in neurons, in particular their roles in axons. We review here our current understanding of the localization, distribution, and growing list of functions of these organelles in the axon in health and disease and outline perspectives for future research.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Axônios/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Autofagossomos/genética , Endossomos/genética , Humanos , Lisossomos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Transporte Proteico/fisiologia
8.
Neuron ; 93(4): 854-866.e4, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28231467

RESUMO

Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Recent data suggest that at physiological temperature SVs are internalized via clathrin-independent ultrafast endocytosis (UFE) within hundreds of milliseconds, while other studies have postulated a key role for clathrin-mediated endocytosis (CME) of SV proteins on a timescale of seconds to tens of seconds. Here we demonstrate using cultured hippocampal neurons as a model that at physiological temperature SV endocytosis occurs on several timescales from less than a second to several seconds, yet, is largely independent of clathrin. Clathrin-independent endocytosis (CIE) of SV membranes is mediated by actin-nucleating formins such as mDia1, which are required for the formation of presynaptic endosome-like vacuoles from which SVs reform. Our results resolve previous discrepancies in the field and suggest that SV membranes are predominantly retrieved via CIE mediated by formin-dependent actin assembly.


Assuntos
Actinas/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Transmissão Sináptica/fisiologia
10.
Curr Opin Neurobiol ; 39: 17-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27016897

RESUMO

Neurotransmission requires the recycling of synaptic vesicles (SVs) to replenish the SV pool, clear release sites, and maintain presynaptic integrity. In spite of decades of research the modes and mechanisms of SV recycling remain controversial. The identification of clathrin-independent modes of SV recycling such as ultrafast endocytosis has added to the debate. Accumulating evidence further suggests that SV membrane retrieval and the reformation of functional SVs are separable processes. This may allow synapses to rapidly restore membrane surface area over a wide range of stimulations followed by slow reformation of release-competent SVs. One of the future challenges will be to pinpoint the exact mechanisms that link SV recycling modes to synaptic activity patterns at different synapses.


Assuntos
Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Clatrina/metabolismo , Endocitose , Humanos
11.
J Biol Chem ; 291(1): 244-54, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26546675

RESUMO

The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally "opens" CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.


Assuntos
Fosfatidilinositóis/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Adsorção , Bicamadas Lipídicas/química , Membranas Artificiais , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise Espectral , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Temperatura
12.
EMBO J ; 33(18): 2113-33, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25082542

RESUMO

The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic and glycinergic synapses is controlled by the scaffold protein gephyrin and the adaptor protein collybistin. We derived new insights into the structure of collybistin and used these to design biochemical, cell biological, and genetic analyses of collybistin function. Our data define a collybistin-based protein interaction network that controls the gephyrin content of inhibitory postsynapses. Within this network, collybistin can adopt open/active and closed/inactive conformations to act as a switchable adaptor that links gephyrin to plasma membrane phosphoinositides. This function of collybistin is regulated by binding of the adhesion protein neuroligin-2, which stabilizes the open/active conformation of collybistin at the postsynaptic plasma membrane by competing with an intramolecular interaction in collybistin that favors the closed/inactive conformation. By linking trans-synaptic neuroligin-dependent adhesion and phosphoinositide signaling with gephyrin recruitment, the collybistin-based regulatory switch mechanism represents an integrating regulatory node in the formation and function of inhibitory postsynapses.


Assuntos
Regulação Alostérica , Proteínas de Transporte/análise , Proteínas de Membrana/análise , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sinapses/química , Sinapses/fisiologia , Animais , Membrana Celular/química , Células Cultivadas , Cristalografia por Raios X , Camundongos , Microscopia de Força Atômica , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Espalhamento a Baixo Ângulo
13.
Proc Natl Acad Sci U S A ; 110(51): 20795-800, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297911

RESUMO

In many brain regions, gephyrin and GABAA receptor clustering at developing inhibitory synapses depends on the guanine nucleotide exchange factor collybistin (Cb). The vast majority of Cb splice variants contain an autoinhibitory src homology 3 domain, and several synaptic proteins are known to bind to this SH3 domain and to thereby activate gephyrin clustering. However, many functional GABAergic synapses form independently of the known Cb-activating proteins, indicating that additional Cb activators must exist. Here we show that the small Rho-like GTPase TC10 stimulates Cb-dependent gephyrin clustering by binding in its active, GTP-bound state to the pleckstrin homology domain of Cb. Overexpression of a constitutively active TC10 variant in neurons causes an increase in the density of synaptic gephyrin clusters and mean miniature inhibitory postsynaptic current amplitudes, whereas a dominant negative TC10 variant has opposite effects. The enhancement of Cb-induced gephyrin clustering by GTP-TC10 does not depend on the guanine nucleotide exchange activity of Cb but involves an interaction that resembles reported interactions of other small GTPases with their effectors. Our data indicate that GTP-TC10 activates the major src homology 3 domain-containing Cb variants by relieving autoinhibition and thus define an alternative GTPase-driven signaling pathway in the genesis of inhibitory synapses.


Assuntos
Proteínas de Transporte/metabolismo , Neurônios GABAérgicos/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Potenciais Sinápticos/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Neurônios GABAérgicos/citologia , Guanosina Trifosfato/genética , Hipocampo/citologia , Humanos , Proteínas de Membrana/genética , Densidade Pós-Sináptica/genética , Estrutura Terciária de Proteína , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rho de Ligação ao GTP/genética
14.
Biochem J ; 446(2): 321-30, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22671294

RESUMO

Neuroligins are postsynaptic adhesion proteins involved in the establishment of functional synapses in the central nervous system. In rodents, four genes give rise to neuroligins that function at distinct synapses, with corresponding neurotransmitter and subtype specificities. In the present study, we examined the interactions between the different neuroligins by isolating endogenous oligomeric complexes using in situ cross-linking on primary neurons. Examining hippocampal, striatal, cerebellar and spinal cord cultures, we found that neuroligins form constitutive dimers, including homomers and, most notably, neuroligin 1/3 heteromers. Additionally, we found that neuroligin monomers are specifically retained in the secretory pathway through a cellular quality control mechanism that involves the neuroligin transmembrane domain, ensuring that dimerization occurs prior to cell surface trafficking. Lastly, we identified differences in the dimerization capacity of autism-associated neuroligin mutants, and found that neuroligin 3 R471C mutants can form heterodimers with neuroligin 1. The pervasive nature of neuroligin dimerization indicates that the unit of neuroligin function is the dimer, and raises intriguing possibilities of distinct heterodimer functions, and of interactions between native and mutant neuroligins contributing to disease phenotypes.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Substituição de Aminoácidos , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo/citologia , Encéfalo/embriologia , Células COS , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Reagentes de Ligações Cruzadas/química , Dimerização , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia
15.
Front Cell Neurosci ; 5: 11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738498

RESUMO

Collybistin (Cb) is a brain-specific GDP/GTP-exchange factor, which interacts with the inhibitory receptor anchoring protein gephyrin. Data from mice carrying an inactivated Cb gene indicate that Cb is required for the formation and maintenance of gephyrin and gephyrin-dependent GABA(A) receptor (GABA(A)R) clusters at inhibitory postsynapses in selected regions of the mammalian forebrain. However, important aspects of how Cb's GDP/GTP-exchange activity, structure, and regulation contribute to gephyrin and GABA(A)R clustering, as well as its role in synaptic plasticity, remain poorly understood. Here we review the current state of knowledge about Cb's function and address open questions concerning its contribution to synapse formation, maintenance, plasticity, and adaptive changes in response to altered network activity.

16.
Proc Natl Acad Sci U S A ; 108(7): 3053-8, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282647

RESUMO

Neuroligins (NL1-NL4) are postsynaptic adhesion proteins that control the maturation and function of synapses in the central nervous system (CNS). Loss-of-function mutations in NL4 are linked to rare forms of monogenic heritable autism, but its localization and function are unknown. Using the retina as a model system, we show that NL4 is preferentially localized to glycinergic postsynapses and that the loss of NL4 is accompanied by a reduced number of glycine receptors mediating fast glycinergic transmission. Accordingly, NL4-deficient ganglion cells exhibit slower glycinergic miniature postsynaptic currents and subtle alterations in their stimulus-coding efficacy, and inhibition within the NL4-deficient retinal network is altered as assessed by electroretinogram recordings. These data indicate that NL4 shapes network activity and information processing in the retina by modulating glycinergic inhibition. Importantly, NL4 is also targeted to inhibitory synapses in other areas of the CNS, such as the thalamus, colliculi, brainstem, and spinal cord, and forms complexes with the inhibitory postsynapse proteins gephyrin and collybistin in vivo, indicating that NL4 is an important component of glycinergic postsynapses.


Assuntos
Proteínas de Transporte/metabolismo , Sistema Nervoso Central/citologia , Proteínas de Membrana/metabolismo , Inibição Neural/fisiologia , Receptores de Glicina/metabolismo , Retina/fisiologia , Sinapses/metabolismo , Animais , Anticorpos Monoclonais , Western Blotting , Células COS , Proteínas de Transporte/genética , Moléculas de Adesão Celular Neuronais , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Eletrorretinografia , Imuno-Histoquímica , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Microscopia Confocal , Técnicas de Patch-Clamp , Retina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Neuron ; 63(5): 628-42, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19755106

RESUMO

In the mammalian CNS, each neuron typically receives thousands of synaptic inputs from diverse classes of neurons. Synaptic transmission to the postsynaptic neuron relies on localized and transmitter-specific differentiation of the plasma membrane with postsynaptic receptor, scaffolding, and adhesion proteins accumulating in precise apposition to presynaptic sites of transmitter release. We identified protein interactions of the synaptic adhesion molecule neuroligin 2 that drive postsynaptic differentiation at inhibitory synapses. Neuroligin 2 binds the scaffolding protein gephyrin through a conserved cytoplasmic motif and functions as a specific activator of collybistin, thus guiding membrane tethering of the inhibitory postsynaptic scaffold. Complexes of neuroligin 2, gephyrin and collybistin are sufficient for cell-autonomous clustering of inhibitory neurotransmitter receptors. Deletion of neuroligin 2 in mice perturbs GABAergic and glycinergic synaptic transmission and leads to a loss of postsynaptic specializations specifically at perisomatic inhibitory synapses.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/fisiologia , Células COS , Moléculas de Adesão Celular Neuronais , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Dendritos/fisiologia , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Técnicas In Vitro , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Neurológicos , Proteínas do Tecido Nervoso/genética , Ratos , Receptores de GABA-A/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...